Non-destructive testing of welds — Visual testing of fusion-welded joints (ISO 17637:2003)
National foreword

This British Standard is the UK implementation of EN ISO 17637:2011. It is identical to ISO 17637:2003. It supersedes BS EN 970:1997 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee WEE/46, Non-destructive testing.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© BSI 2011

ISBN 978 0 580 72104 5

ICS 25.160.40

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 March 2011.

Amendments issued since publication

Date       Text affected
Non-destructive testing of welds - Visual testing of fusion-welded joints (ISO 17637:2003)

English Version

This European Standard was approved by CEN on 13 February 2011.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Foreword

The text of ISO 17637:2003 has been prepared by Technical Committee ISO/TC 44 “Welding and allied processes” of the International Organization for Standardization (ISO) and has been taken over as EN ISO 17637:2011 by Technical Committee CEN/TC 121 “Welding” the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by September 2011, and conflicting national standards shall be withdrawn at the latest by September 2011.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 970:1997.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

Endorsement notice

The text of ISO 17637:2003 has been approved by CEN as a EN ISO 17637:2011 without any modification.
Contents

Foreword ................................................................................................................................. iv
1 Scope ................................................................................................................................... 1
2 Test conditions and equipment ........................................................................................ 1
3 Personnel qualification ....................................................................................................... 1
4 Visual testing ...................................................................................................................... 2
  4.1 General ......................................................................................................................... 2
  4.2 Visual testing of joint preparation ............................................................................... 2
  4.3 Visual testing during welding ..................................................................................... 2
  4.4 Visual testing of the finished weld .............................................................................. 2
  4.5 Visual testing of repaired welds .................................................................................. 3
5 Test records ....................................................................................................................... 4
Annex A (informative) Examples of testing equipment ...................................................... 5
Bibliography .......................................................................................................................... 10
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 17637 was prepared by Technical Committee ISO/TC 44, Welding and allied processes, Subcommittee SC 5, Testing and inspection of welds.
Non-destructive testing of welds — Visual testing of fusion-welded joints

1 Scope

This International Standard covers the visual testing of fusion welds in metallic materials. It may also be applied to visual testing of the joint prior to welding.

2 Test conditions and equipment

The illuminance at the surface shall be a minimum of 350 lx. However, 500 lx is recommended.

For direct inspection, the access shall be sufficient to place the eye within 600 mm of the surface to be examined and at an angle not less than 30° (see Figure 1).

Remote inspection using mirrors, boroscopes, fibre optic cables or cameras shall be considered when the access for testing in accordance with Figure 1 is not possible or when specified by an application standard.

An additional light source can be used to increase the contrast and relief between imperfections and the background.

Where the result of visual testing is inconclusive, the visual test should be supplemented by other non-destructive testing methods for surface inspections.

Examples of equipment used for visual testing are given in Annex A.

3 Personnel qualification

Visual testing of welds and the evaluation of results for final acceptance shall be performed by qualified and capable personnel. It is recommended that personnel be qualified in accordance with ISO 9712 or an equivalent standard at an appropriate level in the relevant industry sector.
4 Visual testing

4.1 General

This International Standard does not define the extent of visual testing. However, this should be determined in advance, e.g., by reference to an application or product standard.

The examiner shall have access to the necessary inspection and production documentation required.

Any visual testing prior to, during or after completion of the weld should be carried out while physical access is still possible. This may include the visual testing of surface treatments.

4.2 Visual testing of joint preparation

When visual testing is required prior to welding, the joint shall be examined to check that:

a) the shape and dimensions of the weld preparation meet the requirements of the welding procedure specification;

b) the fusion faces and adjacent surfaces are clean and any required surface treatment has been carried out in accordance with the application or product standard;

c) the parts to be welded are correctly fixed in relation to each other according to drawings or instructions.

4.3 Visual testing during welding

When required, the weld shall be tested during the welding process to check that:

a) each run or layer of weld metal is cleaned before it is covered by a further run, particular attention being paid to the junctions between the weld metal and the fusion face;

b) there are no visible imperfections, e.g. cracks or cavities; if imperfections are observed, they shall be reported so that remedial action can be taken before the deposition of further weld metal;

c) the transition between the runs and between the weld and the parent metal is so formed that satisfactory melting can be accomplished when welding the next run;

d) the depth and shape of gouging is in accordance with the WPS or compared with the original groove shape in order to assure complete removal of the weld metal as specified;

e) after any necessary repairs/remedial action, the weld conforms to the original requirements of the WPS.

4.4 Visual testing of the finished weld

4.4.1 General

The finished weld shall be examined to determine whether it meets the requirements of the application or product standard or other agreed acceptance criteria, e.g. ISO 5817 or ISO 10042. Finished welds shall at least be examined in accordance with the requirements given in 4.4.2 to 4.4.5.

4.4.2 Cleaning and dressing

The weld shall be examined to check that:

a) all slag has been removed by manual or mechanical means in order to avoid imperfections being obscured;
b) there are no tool impressions or blow marks;

c) when weld dressing is required, overheating of the joint due to grinding is avoided and that grinding
marks and an uneven finish are also avoided;

d) for fillet welds and butt welds to be dressed flush, the joint merges smoothly with the parent metal without
under flushing.

If imperfections (caused by dressing or otherwise) are observed, they shall be reported so that remedial action
can be taken.

4.4.3 Profile and dimensions

The weld shall be examined to check that:

a) the profile of the weld face and the height of any excess weld metal meet the requirements of the
acceptance standard (see 4.4.1);

b) the surface of the weld is regular: the pattern and the pitch of weave marks present an even and
satisfactory visual appearance; the distance between the last layer and the parent metal or the position of
runs has been measured where required by the WPS;

c) the weld width is consistent over the whole of the joint and that it meets the requirements given in the
weld drawing or acceptance standard (see 4.4.1); in the case of butt welds, the weld preparation shall be
checked to ensure that it has been completely filled.

4.4.4 Weld root and surfaces

The visually accessible parts of the weld, i.e. the weld root for a single-sided butt weld and the weld surfaces,
shall be examined for deviations from the acceptance standard (see 4.4.1).

The weld shall be examined to check that:

a) in the case of single-sided butt welds, the penetration, root concavity and any burn-through or shrinkage
grooves are within the limits specified in the acceptance standard over the whole of the joint;

b) any undercut is within the requirements of the acceptance standard;

c) any imperfections such as cracks or porosity, detected using optical aids when necessary, in the weld
surface or heat affected zones comply with the appropriate acceptance criteria;

d) any attachments temporarily welded to the object to facilitate production or assembly and which are
prejudicial to the function of the object or the ability to examine it are removed so that the object is not
damaged; the area where the attachment was fixed shall be checked to ensure freedom of cracks;

e) any arc strikes are within the limits of the acceptance standard.

4.4.5 Post-weld heat treatment

Further testing may be required after post-weld heat treatment.

4.5 Visual testing of repaired welds

4.5.1 General

When welds fail to comply wholly or in part with the acceptance criteria and repair is necessary, the welded
joint shall be examined in accordance with 4.5.2 and 4.5.3 prior to re-welding.
Every repaired weld shall be re-examined to the same requirements as the original weld.

4.5.2 Partially removed weld

The excavation shall be sufficiently deep and long to remove all imperfections. The excavation shall be tapered from the base of the cut to the surface of the weld metal at both the ends and sides of the cut. The width and profile of the cut shall be such that there is adequate access for re-welding.

4.5.3 Completely removed weld

When a defective weld has been completely removed, with or without the need for a new section to be inserted, the shape and dimensions of the weld preparation shall meet the specified requirements for the original weld.

5 Test records

When test records are required, at least the following information should be included in the report:

a) name of the component manufacturer;

b) name of the testing body, if different from a);

c) identity of the object tested;

d) material;

e) type of joint;

f) material thickness;

g) welding process;

h) acceptance criteria;

i) imperfections exceeding the acceptance criteria and their location;

j) the extent of testing with reference to drawings as appropriate;

k) test devices used;

l) result of testing with reference to acceptance criteria;

m) name of tester and date of test.

Welds that have been tested and approved should be suitably marked or identified.

If a permanent visual record of an examined weld is required, photographs or accurate sketches or both should be made with any imperfections clearly indicated.
Annex A
(informative)

Examples of testing equipment

A.1 The following is a list of equipment typically used for carrying out visual tests of welded joints:

a) straight edge or measuring tape with a graduation of 1 mm or finer;
b) vernier calliper in accordance with ISO 3599;
c) feeler gauge with a sufficient number of feelers to measure dimensions between 0,1 mm and 3 mm in steps of 0,1 mm at most;
d) radius gauge;
e) magnifying lens with a magnification $\times 2$ to $\times 5$; the lens should preferably have a scale, see ISO 3058;
f) lamps.

A.2 The following equipment may also be needed:

a) profile measuring device with a wire diameter or width $\leq 1$ mm, where each wire end is rounded;
b) material for impression of welds, e.g. cold setting plastic or clay;
c) for visual inspection of welds with limited accessibility, mirrors, endoscopes, boroscopes, fibre optics or TV-cameras may be used;
d) other measurement devices e.g. specifically designed welding gauges, height/depth gauges, rulers or protractors.

A.3 Typical measurement devices and gauges are listed in detail in Table A.1.

NOTE These devices and gauges are included as examples of testing equipment. Some of the designs may be registered designs or the subject of patents.
### Table A.1 — Measuring instruments and weld gauges — Measuring ranges and reading accuracy

<table>
<thead>
<tr>
<th>Weld gauge</th>
<th>Description</th>
<th>Type of weld</th>
<th>Fillet weld</th>
<th>Butt weld</th>
<th>Measuring range</th>
<th>Reading accuracy</th>
<th>Included or fillet angle</th>
<th>Permissible deviation of included or fillet angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Flat weld</td>
<td>Concave weld</td>
<td>Convex weld</td>
<td>mm</td>
<td>mm</td>
<td>degrees</td>
<td></td>
</tr>
<tr>
<td>Simple weld gauge</td>
<td>a) Measures fillet weld from 3 mm to 15 mm thickness. The gauge is placed by the curved part in the fusion faces so as to have three points of contact with the work piece and the fillet weld.</td>
<td>x</td>
<td>x</td>
<td>—</td>
<td>x</td>
<td>3 to 15</td>
<td>≈ 0,5</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mm</td>
<td>mm</td>
<td>degrees</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mm</td>
<td>mm</td>
<td>degrees</td>
<td></td>
</tr>
<tr>
<td>Set of welding gauges</td>
<td>Measures fillet welds from 3 mm to 12 mm thickness; from 3 mm to 7 mm: graduations of 0,5 mm; above 8 mm, 10 mm and 12 mm. The gauge measures by using the principle of three-point contact.</td>
<td>x</td>
<td>x</td>
<td>—</td>
<td>—</td>
<td>3 to 12</td>
<td>according to fan part</td>
<td>90</td>
</tr>
</tbody>
</table>
### Table A.1 (continued)

<table>
<thead>
<tr>
<th>Weld gauge</th>
<th>Description</th>
<th>Type of weld</th>
<th>Measuring range</th>
<th>Reading accuracy</th>
<th>Included or fillet angle</th>
<th>Permissible deviation of included or fillet angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fillet weld</td>
<td>Butt weld</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flat weld</td>
<td>Concave weld</td>
<td>Convex weld</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Weld gauge with Vernier</td>
<td>Measures fillet welds; also reinforcement of butt welds can be determined. The legs of the gauge are so formed that included angles of 60°, 70°, 80° and 90° of V- and single-V butt weld with broad face can be measured. Slight deviations from these lead to significant errors.</td>
<td>x</td>
<td>x</td>
<td>—</td>
<td>x</td>
<td>0 to 20</td>
</tr>
<tr>
<td>Self made weld gauge</td>
<td>Measures 7 throat thicknesses of fillet welds with an included angle of 90°.</td>
<td>x</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0 to 20</td>
</tr>
<tr>
<td>Three-scale weld gauge</td>
<td>Measures throat thickness and leg length. Can also measure weld reinforcement of butt welds. Easy to use. Also appropriate for asymmetric fillet welds.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0 to 15</td>
</tr>
<tr>
<td>Weld gauge</td>
<td>Description</td>
<td>Type of weld</td>
<td>Measuring range</td>
<td>Reading accuracy</td>
<td>Included or fillet angle</td>
<td>Permissible deviation of included or fillet angle</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------------------------------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td></td>
<td><strong>Gauge for checking profile of fillet welds</strong></td>
<td>Fillet weld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Checking the profile of one shape for one size of fillet welds. This type of gauge needs one model for each size of fillet weld.</td>
<td>Convex weld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butt weld</td>
<td>Convex weld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Multi-purpose gauge</strong></td>
<td>Flat weld</td>
<td>0 to 50</td>
<td>0.3</td>
<td>0 to 45 (angle of bevel)</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Measures angle of bevel, leg length of fillet weld, undercut, misalignment, throat thickness and weld reinforcement.</td>
<td>Concave weld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Universal weld gauge</strong></td>
<td>Flat weld</td>
<td>0 to 30</td>
<td>0.1</td>
<td>—</td>
<td>± 25 %</td>
</tr>
<tr>
<td></td>
<td>Measurement tasks:</td>
<td>Concave weld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>— fillet welds: shape and dimensions.</td>
<td>Convex weld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>— butt welds: misalignment of plates, joint preparation (angle width), weld reinforcement, weld width, undercuts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Gap gauge</strong></td>
<td>Flat weld</td>
<td>0 to 6</td>
<td>0.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Measures the width of gaps.</td>
<td>Concave weld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Convex weld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table A.1 (continued)

<table>
<thead>
<tr>
<th>Weld gauge</th>
<th>Description</th>
<th>Type of weld</th>
<th>Measuring range</th>
<th>Reading accuracy</th>
<th>Included or fillet angle</th>
<th>Permissible deviation of included or fillet angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Flat weld</td>
<td>Concave weld</td>
<td>Convex weld</td>
<td>Butt weld</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mm</td>
<td>mm</td>
<td></td>
<td>mm</td>
<td>degrees</td>
</tr>
<tr>
<td>Hook gauge for misalignment</td>
<td>Measures the misalignment of the preparation for butt welds on plates and pipes.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>x</td>
<td>0 to 100</td>
</tr>
<tr>
<td>Universal butt weld gauge</td>
<td>Measures the preparation and the finished butt weld: 1 angle of bevel, 2 width of root gap, 3 weld reinforcement, 4 width of weld surface, 5 depth of undercut, 6 diameter of consumables.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0 to 30</td>
</tr>
</tbody>
</table>
Bibliography

[1] ISO 3058, Non-destructive testing — Aids to visual inspection — Selection of low-power magnifiers

[2] ISO 3599, Vernier callipers reading to 0.1 and 0.05 mm


[4] ISO 9712, Non-destructive testing — Qualification and certification of personnel


British Standards Institution (BSI)

BSI is the independent national body responsible for preparing British Standards and other standards-related publications, information and services. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions
British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions. It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover.

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001

BSI offers Members an individual updating service called PLU$ which ensures that subscribers automatically receive the latest editions of standards.

Tel: +44 (0)20 8996 7669 Fax: +44 (0)20 8996 7001
Email: plus@bsigroup.com

Buying standards
You may buy PDF and hard copy versions of standards directly using a credit card from the BSI Shop on the website www.bsigroup.com/shop. In addition all orders for BSI, international and foreign standards publications can be addressed to BSI Customer Services.

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001
Email: orders@bsigroup.com

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards
BSI provides a wide range of information on national, European and international standards through its Knowledge Centre.

Tel: +44 (0)20 8996 7004 Fax: +44 (0)20 8996 7005
Email: knowledgecentre@bsigroup.com

Various BSI electronic information services are also available which give details on all its products and services.

Tel: +44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048
Email: info@bsigroup.com

BSI Subscribing Members are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration.

Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001
Email: membership@bsigroup.com

Information regarding online access to British Standards via British Standards Online can be found at www.bsigroup.com/BSOL. Further information about BSI is available on the BSI website at www.bsigroup.com/standards

Copyright
Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright & Licensing Manager.

Tel: +44 (0)20 8996 7070
Email: copyright@bsigroup.com

BSI Group Headquarters
389 Chiswick High Road London W4 4AL UK
Tel +44 (0)20 8996 9001
Fax +44 (0)20 8996 7001
www.bsigroup.com/standards